42 research outputs found

    Generative Models and Learning Algorithms for Core-Periphery Structured Graphs

    Full text link
    We consider core-periphery structured graphs, which are graphs with a group of densely and sparsely connected nodes, respectively, referred to as core and periphery nodes. The so-called core score of a node is related to the likelihood of it being a core node. In this paper, we focus on learning the core scores of a graph from its node attributes and connectivity structure. To this end, we propose two classes of probabilistic graphical models: affine and nonlinear. First, we describe affine generative models to model the dependence of node attributes on its core scores, which determine the graph structure. Next, we discuss nonlinear generative models in which the partial correlations of node attributes influence the graph structure through latent core scores. We develop algorithms for inferring the model parameters and core scores of a graph when both the graph structure and node attributes are available. When only the node attributes of graphs are available, we jointly learn a core-periphery structured graph and its core scores. We provide results from numerical experiments on several synthetic and real-world datasets to demonstrate the efficacy of the developed models and algorithms

    Sampling and Recovery of Signals on a Simplicial Complex using Neighbourhood Aggregation

    Full text link
    In this work, we focus on sampling and recovery of signals over simplicial complexes. In particular, we subsample a simplicial signal of a certain order and focus on recovering multi-order bandlimited simplicial signals of one order higher and one order lower. To do so, we assume that the simplicial signal admits the Helmholtz decomposition that relates simplicial signals of these different orders. Next, we propose an aggregation sampling scheme for simplicial signals based on the Hodge Laplacian matrix and a simple least squares estimator for recovery. We also provide theoretical conditions on the number of aggregations and size of the sampling set required for faithful reconstruction as a function of the bandwidth of simplicial signals to be recovered. Numerical experiments are provided to show the effectiveness of the proposed method

    Fast Graph Convolutional Recurrent Neural Networks

    Full text link
    This paper proposes a Fast Graph Convolutional Neural Network (FGRNN) architecture to predict sequences with an underlying graph structure. The proposed architecture addresses the limitations of the standard recurrent neural network (RNN), namely, vanishing and exploding gradients, causing numerical instabilities during training. State-of-the-art architectures that combine gated RNN architectures, such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) with graph convolutions are known to improve the numerical stability during the training phase, but at the expense of the model size involving a large number of training parameters. FGRNN addresses this problem by adding a weighted residual connection with only two extra training parameters as compared to the standard RNN. Numerical experiments on the real 3D point cloud dataset corroborates the proposed architecture.Comment: 5 pages.Submitted to Asilomar Conference on Signals, Systems, and Computer
    corecore